
OPTIMIZING DATA ACCESS WITH
NEXT-GENERATION STORAGE
ENGINE, PERSISTENT MEMORY
AND SMART NICS

OPTIMIZING DATA ACCESS WITH
NEXT-GENERATION STORAGE
ENGINE, PERSISTENT MEMORY
AND SMART NICS
Kenneth Cain, Venkata Krishnan, Johann Lombardi

Intel Corporation

2020 IEEE High Performance Extreme Computing Virtual Conference

Kenneth Cain, Venkata Krishnan, Johann Lombardi

Intel Corporation

2020 IEEE High Performance Extreme Computing Virtual Conference

NOTICES AND DISCLAIMERS

2 IEEE HPEC 2020

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration.

No product or component can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. For more complete information about
performance and benchmark results, visit http://www.intel.com/benchmarks .

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific
computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you
in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit http://www.intel.com/benchmarks .

Intel Advanced Vector Extensions (Intel AVX) provides higher throughput to certain processor operations. Due to varying processor power characteristics, utilizing AVX instructions may cause a) some parts to
operate at less than the rated frequency and b) some parts with Intel® Turbo Boost Technology 2.0 to not achieve any or maximum turbo frequencies. Performance varies depending on hardware, software,
and system configuration and you can learn more at http://www.intel.com/go/turbo.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3
instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide cost
savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are accurate.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/go/turbo

OUTLINE

▪ Overview: Distributed Asynchronous Object Storage (DAOS)

• Architecture

• Examples of network and compute intensive operation

▪ Architecture Research: COnfigurable network Protocol Accelerator (COPA)

• HW/SW SmartNIC Framework

▪ Architecture Research Efforts Toward DAOS with COPA

3 IEEE HPEC 2020

DAOSDAOS
Distributed Asynchronous Object StorageDistributed Asynchronous Object Storage

DAOS ARCHITECTURE
Two-Level Data Placement and High-Performance Communications

IEEE HPEC 20205

▪ Placement Level 1: Client Choose Server(s)
• Client-calculated jump consistent hash based on key, object class

• Fault domain aware

▪ Placement Level 2: Server Choose Media:
• Data Center Persistent Memory (DCPMM) or NVMe SSD

• DCPMM  app. small, byte-granular data, DAOS metadata

• NVMe SSD  app-only bulk data (for high throughput)

▪ Communications: iWARP, RoCE, IB, OPA
• OS-bypass for low-latency, high message rate I/O

• Servers initiate RDMA to/from

• DCPMM (zero copy) + PMDK library for flush

• DRAM + SPDK library for NVMe SSD I/O

• Clients (libdaos):

• No: copies, context switches, locking, caching

dedicated cores

AI/Analytics/Simulation Workflow

RPCs
RDMA

transfers

DAOS
Service

DAOS Nodes (DNs)

Intel® QLC 3D Nand
SSD

SPDK

PMDK

Compute Nodes

UPI

Xeon
CPUPCIe

x16
PCIe
x4

Fabric
PCIe
x16

PCIe
x4

Xeon
CPU

NIC

NIC

Fabric

DCPMM

DCPMM

NVMe

NVMe

Dual-Socket DAOS Nodes (DNs)
Intel® Xeon servers with DCPMM & NVMe SSDs

HDF5
POSIX/Files

fuse, intercept

DAOS library + CART

Mercury

OpenFabrics Interface (OFI) / libfabric

MPI-IO Spark
Python

KVS
. . .

fi_tsend /

fi_trecv

fi_trecv /

fi_tsend

fi_readmsg

fi_writemsg

DAOS ARCHITECTURE

▪ Degraded mode – client I/O satisfied by surviving servers
• Non-blocking protocol for server fail-out

▪ Self-healing / rebuild (online recovery)
• Declustered – per object, select alternate server storage to restore original degree of replication

• Many alternate nodes in parallel – pull object data from surviving servers

• Throttled – to control impact to serving ongoing client I/O requests

▪ Leader server chosen to manage distributed transaction protocol (DTX)
• Chosen algorithmically based on key – no single leader node bottleneck

Data Protection and Self-Healing / Rebuild

IEEE HPEC 20206

▪ Replication ▪ Erasure Code (EC)

Client

Server Server Server

datadata
Client

Server Server ServerServer

datadata

Data transfer

directly with client

DTX RPC with leader

DAOS ARCHITECTURE: END-TO-END DATA INTEGRITY

▪ Protection Against Data Corruption: via Checksums

• Protect both keys and values against “silent data corruption” over network or in storage media

• Calculated on client, verified and stored on server (optionally calculated on server for more insight)

• Xeon clients/servers: checksums via Intel Intelligent Storage Acceleration Library (ISA-L)

▪ Architecture Motivations, Disaggregated + Scalable + Reliable Storage Use Case

• Computationally intensive: e.g., data protection (Erasure Code) ; end-to-end integrity (checksum)

• ISA-L for checksum use will consume CPU core 100% and have impact on CPU cache contents

• Network intensive: e.g., self-healing rebuild with scalable parallel communication among all servers in storage pool

• Infrastructure size(footprint) and power consumption

▪ Suggestive of Need For: Smart NIC, and Smart NIC in SoC Architecture

• Need: HW-based storage functions – to free up CPU cycles and cache for client apps & storage service

• Need: standards-based networking to ease porting of storage software (client + server) to use Smart NIC

And Architectural Motivations Toward Smart NIC and SoC Based Storage Nodes

IEEE HPEC 20207

ARCHITECTURE RESEARCH:
COPA
ARCHITECTURE RESEARCH:
COPA
COnfigurable network Protocol Accelerator

An Integrated Networking and Accelerator HW/SW Framework

COnfigurable network Protocol Accelerator

An Integrated Networking and Accelerator HW/SW Framework

COPA ARCHITECTURE

IEEE HPEC 20209

COPA provides an integrated networking and accelerator
framework on an FPGA with programming simplicity

• Supports full RDMA (PUT/GET) based communication

• Accelerators modules integrated with communication

• Open standards API (libfabric/OFI) + extensions

Open Fabrics Interface (OFI)*
Extended to expose acceleration capabilities

Open Fabrics Interface (OFI)*
Extended to expose acceleration capabilities

OFI Provider for COPA

COPA Transport + Accelerators

COPA Driver

Shim layer (Ethernet)

Host Interface
PCIe/CXL/UPI to Xeon (or) AXI to ARM on FPGA SoC

So
ft
w
a
re

Applications/Middleware

H
a
rd
w
a
re

Ethernet MAC

C
O
PA

Network IP +
acceleration

Network IP +
acceleration

Inline p
o

rt
p

o
rtp

o
rt

p
o

rt

LookasideLookaside
CPUCPU CPUCPUNetworkNetwork

COPA provides streaming (inline) compute during TX/RX
and traditional (lookaside) acceleration

• Local invocation by software

• Remote invocation by inbound packet (no CPU/OS involvement)

Inline

LookasideLookaside

SYSTEM COMPONENTS

▪ Combinations of Xeon+FPGA → FPGA SoC Exercised

• Focus on network, acceleration, and memory (not NVMe SSD here)

▪ Micro Pattern Evaluations

• Fabric PUT, GET: transfer with inline TX/RX acceleration (CRC64)

• Some lookaside accelerations (no network), e.g., CRC64

▪ Storage “Proxy” Pattern Evaluations

• Update and Fetch (RPCs, PUT/GET transfer, inline/lookaside CRC64)

FPGA SoC and FPGA PCIe (Currently Stratix 10) on 100GbE Network

100G
Ethernet

FPGA

Embedded
ARM

FPGA

Embedded
ARM

Network
Ports

Compute
Node

Compute
Node

FPGA FPGA

Network
Ports

. . .

. . .

V. Krishnan, O. Serres and M. Blocksome, "COnfigurable Network Protocol Accelerator (COPA) † : An Integrated Networking/Accelerator Hardware/Software
Framework," 2020 IEEE Symposium on High-Performance Interconnects (HOTI), Piscataway, NJ, USA, 2020, pp. 17-24, doi: 10.1109/HOTI51249.2020.00018.

ARCHITECTURE RESEARCH:
DAOS WITH COPA
ARCHITECTURE RESEARCH:
DAOS WITH COPA

DAOS AND COPA PRELIMINARY INTEGRATION

DAOS and COPA Integration

▪ Clients on Xeon hosts with COPA

▪ Service Embedded in SoC with COPA

▪ Fabric agnostic SW port (via OFI, COPA provider)

▪ Full Stack Run Including Server NVMe SSD I/O

▪ Storage Function Acceleration by COPA
• Lookaside HW CRC64 on clients + servers

• Instead of SW CRC (ISA-L)

Conclusions and Potentials / Vision

▪ DAOS Potential Enhancements
• use streaming / inline acceleration for checksums

• engage more storage function offloads (e.g., Erasure Code)

▪ Advanced HW Features Can Enable FPGAs as
Autonomous Nodes. E.g.,:
• Hard Processor Cores

• Compute Express Link (CXL) – perf., cache/memory coherence

• Advanced memory – DDR, HBM, Persistent Memory

• …

And Conclusions

IEEE HPEC 202012

HPC Workflow

SSD

Embedded
processor

FPGA

DAOS Persistent Service

SCM
Emulated

Messaging, RMA &
Inline Accelerations

Altera SoC FPGAAltera SoC FPGA

Compute NodesCompute Nodes

COPA Provider

Lookaside
Accelerations

BACKUPBACKUP

DAOS RESOURCES

14 IEEE HPEC 2020

Resource URL

Source Code on GitHub https://github.com/daos-stack/daos

Documentation https://daos-stack.github.io/

Community Mailing List https://daos.groups.io/

DAOS Solution Brief https://www.intel.com/content/www/us/en/high-performance-computing/overview.html

https://github.com/daos-stack/daos
https://daos-stack.github.io/
https://daos.groups.io/
https://www.intel.com/content/www/us/en/high-performance-computing/overview.html

DAOS PERFORMANCE

▪ IOR

• Easy: any IOR pattern to show best-case performance without any explicit caching

• Hard: single shared file with transfer 47008 bytes!

• Separate Write and Read/verify runs.

▪ mdtest

• Easy: private directory per process with empty files

• Hard: shared directory with 3901-byte files

• Separate write, read, stat, and delete runs

▪ Find

• scan namespace created with IOR and mdtest

IO-500 Benchmarks

IEEE HPEC 202015

DAOS PERFORMANCE

▪ Cluster Summary

• 10x, 50x compute nodes (10 node, open challenges)

• 42 ranks per node for 10 node challenge

• 32 ranks per node for open challenge

• 30x storage nodes

• Dual-rail Omni-Path® fabric

▪ Compute node (CN) specifications

• Mix of:

• Broadwell, Haswell, Cascade Lake

• 2x Intel® Omni-Path® 100 adaptors

▪ Storage node (SN) specifications

• 2x Cascade Lake CPU

• Xeon® Platinum 8260L @ 2.4GHz

• 24 cores per CPU

• 12x Optane® DC Persistent Memory DIMMs

• Configured in app-direct/interleaved mode

• 2x Intel® Omni-Path® 100 adaptors

IO-500 “Wolf” Testbed Configuration

IEEE HPEC 202016

0 100 200 300 400 500 600 700

Hard Read

Easy Read

Hard Write

Easy Write

IOR Bandwidth (GiB/s)

DAOS PERFORMANCE
IOR Bandwidth on Wolf Cluster

IEEE HPEC 202017

0 2000 4000 6000 8000 10000 12000 14000

Find

Hard Read

Hard Delete

Easy Delete

Hard Stat

Easy Stat

Hard Write

Easy Write

Metadata Operation Rate (kIOPS)

DAOS PERFORMANCE
Metadata IOPS on Wolf Cluster

IEEE HPEC 202018

DAOS & IO-500 IN NUMBERS

19 IEEE HPEC 2020

Metric Intel DAOS IO-500 Run

Total Number of files created 5.8 Billions

Biggest file size 79.2 TiB

Time to fully read the big file 141 seconds

File scanning rate
(including file size retrieval)

10 Millions/s

DAOS ARCHITECTURE
Client Library and Interfaces

IEEE HPEC 202020

AI/Analytics/Simulation Workflow

DAOS library

RDMA
transfers

Middleware

PMDK

DAOS
Service

Intel® QLC 3D Nand
SSD

DAOS Nodes

RPC

SPDK

Compute Nodes

POSIX I/O

HPC APPs

HDF5 MPI-IO Python
Apache
Spark

Apache
Arrow

(No)SQL

Analytics/AI APPs

TensorFlowSEGY

Developed Investigating

▪ POSIX I/O – namespace distributed over servers

• DAOS Filesystem (libdfs) – apps / frameworks may link directly

• FUSE Daemon – transparent access to DAOS, involves syscalls

• I/O Interception Library – OS bypass for read/write operations

▪ MPI-IO Support

• MPI-IO Driver uses DAOS array API (+ libdfs for collective open)

▪ Python Bindings

• Export key-value store objects

• Integrate with dictionaries: iterator, direct assignment, etc.

